### **Horticultural Crop Value**

| Crop       | Acres     | Farm Gate<br>Value |  |  |
|------------|-----------|--------------------|--|--|
| Grapes     | 1,000,000 | 6 Billion          |  |  |
| Nuts       | 1,300,000 | 6 Billion          |  |  |
| Citrus     | 800,000   | 3.5 Billion        |  |  |
| Tree fruit | 250,000   | 1.0 Billion        |  |  |



### Horticulture Research Roadmap

Drive research to maximize productivity, sustainability and competitiveness of US horticultural crops

#### **Genomics**

Gene identification and function
Gene regulation
Traditional breeding
Molecular breeding

## Resources & Environment

Air Water Land Labor Sustainability

## Precision Management

Remote sensing
Proximal sensing
Automation
Mechanization
Big data and
informatics

### Horticulture Research Roadmap

Drive research to maximize productivity, sustainability and competitiveness of US horticultural crops

**Genomics** 

Gene identification

Resources & Environment

Air

Precision Management

Remote sensing

### **Next Generation Water Management**

Traditional breeding Molecular breeding

Labor Sustainability Mechanization
Big data and
informatics

Genome x Environment x Management

# **Current Methods for Water Management**

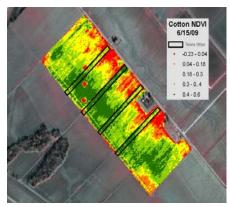
- Standard, discrete methods for monitoring plant water and soil moisture status have significant limitations for production
  - Subjective
  - Location specific
  - Labor intensive and expensive
  - Too few measurements are collected










## Next Generation Water Management Remote sensing allows an integrated look at the vineyard

### Remote sensing

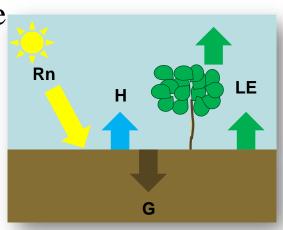
- Multispectral, hyperspectral, thermal provide measures of plant water use and status
- Vegetation indices provide measures of canopy development and size
- Integration of remote sensing provides our most accurate assessment of whole-block water use and crop irrigation requirements







### **Next Generation Water Management**


Models based on remote sensing data will replace current methods for irrigation management

### METRIC (Mapping evapotranspiration at high resolution and internalized calibration)

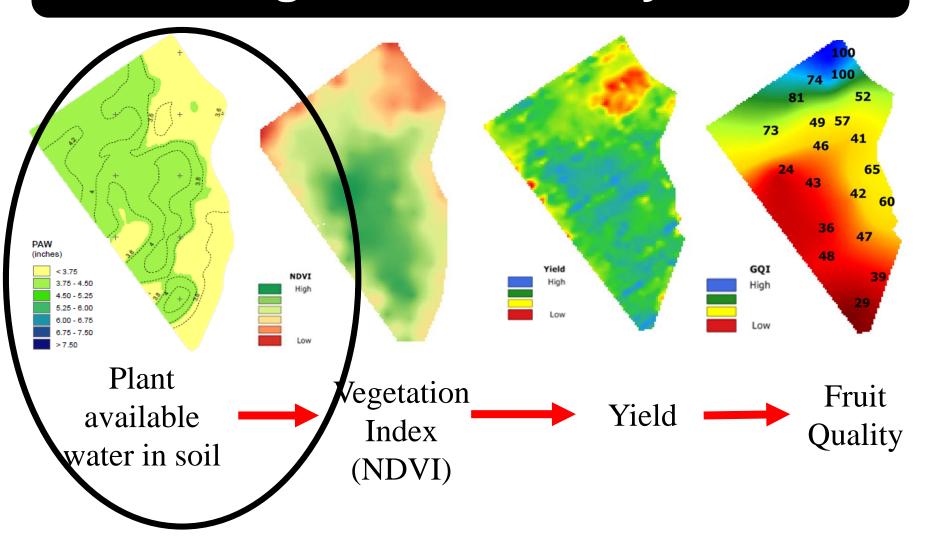
• ET residual of surface energy balance

$$Rn + LE + G + H = 0$$

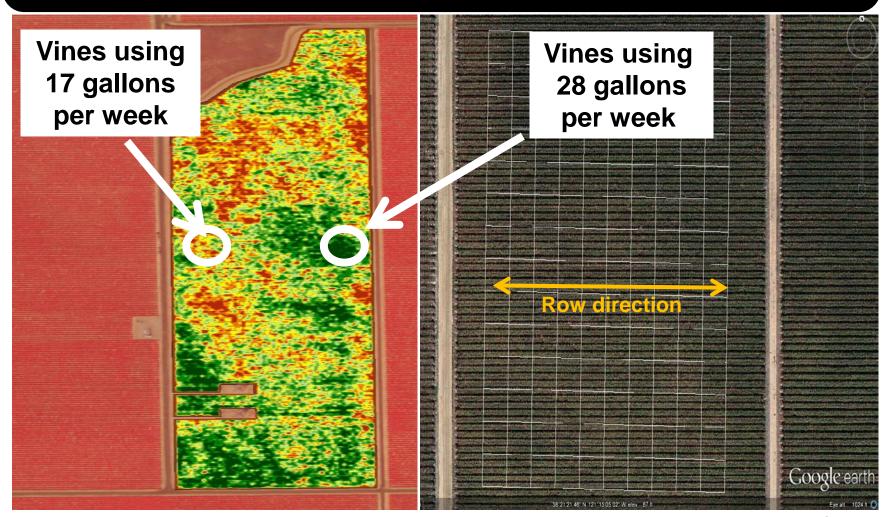
- Inputs
  - Landsat (visible & infrared)
  - CIMIS weather data
- Outputs
  - ETc
  - Kc (f/NDVI)
- Watering of each zone:

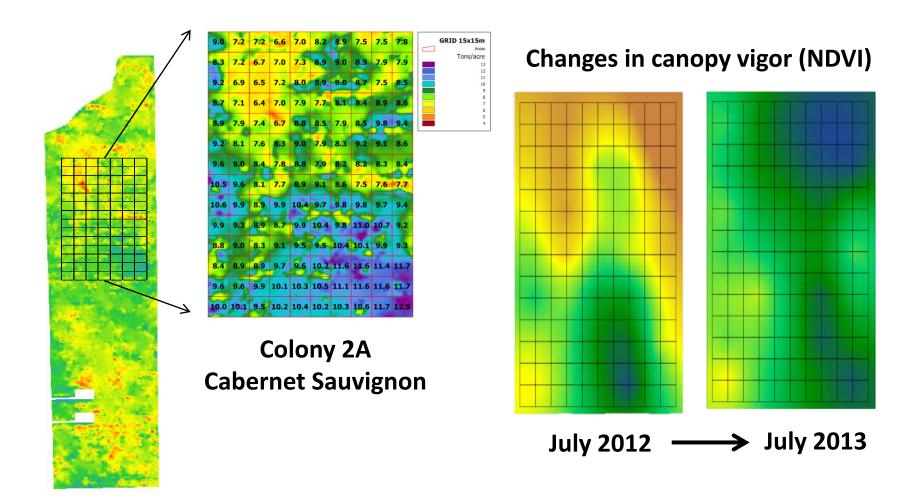


## Building robust models based on remote sensing requires ground truthing






### Integrated data analytics



### Variable rate drip irrigation





### Variable Rate Irrigation

### Precision Irrigation

| 8.8  | 7.1 | 7.4 | 6.6  | 7.1  | 8.2  | 8.8  | 7.6  | 7.6  | 8.1  |
|------|-----|-----|------|------|------|------|------|------|------|
| 8.2  | 7.1 | 6.7 | 7.0  | 7.3  | 8.9  | 9.0  | 8.9  | 7.8  | 8.0  |
| 8.9  | 6.9 | 6.4 | 7.2  | 8.1  | 8.8  | 9.0  | 8.7  | 7.6  | 8.6  |
| 8.7  | 7.1 | 6.1 | 6.8  | 7.8  | 7.8  | 8.1  | 8.5  | 9.1  | 8.7  |
| 8.7  | 7.8 | 7.4 | 6.9  | 8.9  | 8.4  | 7.9  | 8.2  | 9.6  | 9.4  |
| 9.2  | 8.2 | 7.6 | 8.2  | 9.0  | 7.9  | 8.3  | 9.1  | 9.0  | 8.7  |
| 9.7  | 9.1 | 8.5 | 7.9  | 8.7  | 8.2  | 8.2  | 8.2  | 8.4  | 8.5  |
| 10.5 | 9.3 | 7.9 | 7.9  | 8.9  | 8.9  | 8.2  | 7.6  | 7.7  | 7.7  |
| 10.5 | 9.8 | 9.0 | 10.2 | 10.2 | 9.8  | 9.5  | 9.5  | 9.6  | 9.2  |
| 9.8  | 9.1 | 8.6 | 8.5  | 9.4  | 10.4 | 10.2 | 11.0 | 10.5 | 9.5  |
| 8.6  | 8.8 | 8.3 | 9.2  | 9.6  | 9.6  | 10.4 | 10.0 | 9.7  | 9.2  |
| 8.4  | 9.1 | 8.3 | 9.6  | 9.4  | 10.1 | 11.5 | 11.5 | 11.5 | 11.9 |
| 9.4  | 9.5 | 9.9 | 10.2 | 10.1 | 10.5 | 10.9 | 11.4 | 11.5 | 11.5 |
| 9.9  | 9.9 | 9.4 | 10.0 | 10.1 | 10.2 | 10.2 | 10.7 | 11.8 | 12.4 |

| 12.8 | 12.2 | 14.0 | 10.9 | 12.2 | 11.7 | 12.6 | 11.1 | 11.4 | 12.3 |
|------|------|------|------|------|------|------|------|------|------|
| 11.3 | 11.3 | 11.5 | 12.5 | 12.9 | 12.7 | 11.5 | 10.8 | 10.6 | 11.8 |
| 10.8 | 12.5 | 11.8 | 12.1 | 12.0 | 13.3 | 11.9 | 11.8 | 10.4 | 11.8 |
| 11.9 | 13.1 | 11.6 | 12.8 | 13.2 | 11.9 | 10.2 | 13.0 | 11.4 | 10.7 |
| 11.9 | 11.9 | 11.2 | 12.0 | 13.1 | 11.0 | 10.3 | 12.2 | 10.3 | 10.6 |
| 11.1 | 11.7 | 10.5 | 10.4 | 10.4 | 9.4  | 10.3 | 9.5  | 8.6  | 10.3 |
| 10.9 | 10.2 | 9.9  | 9.4  | 9.5  | 10.1 | 10.5 | 10.0 | 11.0 | 11.2 |
| 10.7 | 10.4 | 8.6  | 8.9  | 7.9  | 9.7  | 10.1 | 10.1 | 10.4 | 11.4 |
| 10.3 | 8.7  | 8.0  | 8.9  | 8.5  | 9.2  | 9.3  | 8.7  | 8.6  | 8.3  |
| 9.1  | 7.9  | 7.7  | 7.6  | 6.7  | 6.7  | 7.8  | 8.0  | 8.0  | 7.5  |
| 9.1  | 8.6  | 7.9  | 7.7  | 7.4  | 6.2  | 7.1  | 8.5  | 9.8  | 8.4  |
| 10.8 | 10.7 | 9.1  | 7.7  | 6.2  | 7.0  | 7.4  | 9.8  | 9.7  | 10.0 |
| 10.4 | 10.2 | 9.3  | 8.9  | 9.1  | 8.7  | 9.0  | 9.1  | 9.1  | 9.5  |
| 10.1 | 10.0 | 9.8  | 9.3  | 8.9  | 8.4  | 9.2  | 10.0 | 9.4  | 9.7  |

2012 Block Yield 8.9 t/ac

2013 Block Yield 10.2 t/ac 20% less water applied

### **Next Generation Water Management**

#### **MEASURE**

soil and plant water status

Develop integrated, block level measures to monitor plant water and soil moisture status

#### MODEL

remote and proximal sensor data

Correlate relationships among remote sensing, proximal sensing, traditional measures and other data sources and plant water and soil moisture status

#### MANAGE

Irrigation to maximize water use efficiency

Develop precision irrigation systems for variable rate irrigation management, including Best Practices for irrigation amount, timing and frequency to optimize water use efficiency

### Summary

- Increased focus on specialty crops
  - Modern tools to measure, model and manage water and improve water use efficiency
- Commodity group collaboration to extend ARS efforts
  - Potential source of funding
  - Link to extension of information to grower community
- Establish Grape LTAR in California
  - Focus on water agro-ecosystem and management

